The number of real values of $\lambda $ for which the system of linear equations $2x + 4y - \lambda  z = 0$ ;$4x + \lambda y + 2z = 0$ ; $\lambda x + 2y+ 2z = 0$ has infinitely many solutions, is

  • [JEE MAIN 2017]
  • A

    $0$

  • B

    $1$

  • C

    $2$

  • D

    $3$

Similar Questions

Let $D _{ k }=\left|\begin{array}{ccc}1 & 2 k & 2 k -1 \\ n & n ^2+ n +2 & n ^2 \\ n & n ^2+ n & n ^2+ n +2\end{array}\right|$. If $\sum \limits_{ k =1}^n$ $D _{ k }=96$, then $n$ is equal to

  • [JEE MAIN 2023]

$\left| {\,\begin{array}{*{20}{c}}{bc}&{bc' + b'c}&{b'c'}\\{ca}&{ca' + c'a}&{c'a'}\\{ab}&{ab' + a'b}&{a'b'}\end{array}\,} \right|$ is equal to

If the lines $x + 2ay + a = 0$, $x + 3by + b = 0$  and $x + 4cy + c = 0$ are concurrent, then $a$, $b$ and $c$ are in

If $a$, $b$, $c$, $d$, $e$, $f$ are in $G.P$., then the value of $\left| {\begin{array}{*{20}{c}}
  {{a^2}}&{{d^2}}&x \\ 
  {{b^2}}&{{e^2}}&y \\ 
  {{c^2}}&{{f^2}}&z 
\end{array}} \right|$ depends on

If $\alpha+\beta+\gamma=2 \pi$, then the system of equations

$x+(\cos \gamma) y+(\cos \beta) z=0$

$(\cos \gamma) x+y+(\cos \alpha) z=0$

$(\cos \beta) x+(\cos \alpha) y+z=0$

has :

  • [JEE MAIN 2021]