If $\frac{\pi }{2} < \alpha  < \frac{3}{2}\pi $ , then the modulus and argument of $(1 + cos\, 2\alpha ) + i\, sin\, 2\alpha $ is respectively

  • A

    $2\, cos\alpha ,\, \alpha $

  • B

    $-2\, cos\alpha ,\, \alpha $

  • C

    $-2\, cos\alpha ,\, \alpha - \pi $

  • D

    None of these

Similar Questions

If $z_1, z_2, z_3$ $\in$  $C$ such that $|z_1| = |z_2| = |z_3| = 2$, then greatest value of expression $|z_1 - z_2|.|z_2 - z_3| + |z_3 - z_1|.|z_1 - z_2| + |z_2 - z_3||z_3 - z_1|$ is

Let ${z_1}$ be a complex number with $|{z_1}| = 1$ and ${z_2}$be any complex number, then $\left| {\frac{{{z_1} - {z_2}}}{{1 - {z_1}{{\bar z}_2}}}} \right| = $

If $z = \frac{{ - 2}}{{1 + \sqrt 3 \,i}}$ then the value of $arg\,(z)$ is

If $z_{1}=2-i, z_{2}=1+i,$ find $\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+1}\right|$

The conjugate of the complex number $\frac{{2 + 5i}}{{4 - 3i}}$ is