$z_1$ and $z_2$ are two complex numbers such that $|z_1 + z_2|$ = $1$ and $\left| {z_1^2 + z_2^2} \right|$ = $25$ , then minimum value of $\left| {z_1^3 + z_2^3} \right|$ is
$24$
$42$
$37$
$33$
If $5 + ix^3y^2$ and $x^3 + y^2 + 6i$ are conjugate complex numbers and arg $(x + iy) = \theta $ , then ${\tan ^2}\,\theta $ is equal to
If $z=\frac{1}{2}-2 i$, is such that $|z+1|=\alpha z+\beta(1+i), i=\sqrt{-1}$ and $\alpha, \beta \in R \quad$, then $\alpha+\beta$ is equal to
The modulus and amplitude of $\frac{{1 + 2i}}{{1 - {{(1 - i)}^2}}}$ are
The conjugate of the complex number $\frac{{2 + 5i}}{{4 - 3i}}$ is
The amplitude of $0$ is