Let $z$ be complex number such that $\left|\frac{z-i}{z+2 i}\right|=1$ and $|z|=\frac{5}{2} \cdot$ Then the value of $|z+3 i|$ is
$\sqrt{10}$
$2 \sqrt{3}$
$\frac{7}{2}$
$\frac{15}{4}$
If $|{z_1}|\, = \,|{z_2}|$ and $amp\,{z_1} + amp\,\,{z_2} = 0$, then
If ${z_1}$ and ${z_2}$ are two non-zero complex numbers such that $|{z_1} + {z_2}| = |{z_1}| + |{z_2}|,$then arg $({z_1}) - $arg $({z_2})$ is equal to
For any complex number $w = c + id$, let $\arg ( w ) \in(-\pi, \pi]$, where $i =\sqrt{-1}$. Let $\alpha$ and $\beta$ be real numbers such that for all complex numbers $z=x+$ iy satisfying arg $\left(\frac{z+\alpha}{z+\beta}\right)=\frac{\pi}{4}$, the ordered pair $( x , y )$ lies on the circle
$x^2+y^2+5 x-3 y+4=0 .$
Then which of the following statements is (are) TRUE?
$(A)$ $\alpha=-1$ $(B)$ $\alpha \beta=4$ $(C)$ $\alpha \beta=-4$ $(D)$ $\beta=4$
If $z = \cos \frac{\pi }{6} + i\sin \frac{\pi }{6}$ then
If $|z - 25i| \le 15$, then $|\max .amp(z) - \min .amp(z)| = $