4-1.Complex numbers
hard

Let $z$ be complex number such that $\left|\frac{z-i}{z+2 i}\right|=1$ and $|z|=\frac{5}{2} \cdot$ Then the value of $|z+3 i|$ is 

A

$\sqrt{10}$

B

$2 \sqrt{3}$

C

$\frac{7}{2}$

D

$\frac{15}{4}$

(JEE MAIN-2020)

Solution

$\left|\frac{z-i}{z+2 i}\right|=1$

$\Rightarrow|z-i|=|z+2 i|$

$\Rightarrow \quad z$ lies on perpendicular bisector of $(0,1)$ and $(0,-2)$

$\Rightarrow \quad \operatorname{Im} z=-\frac{1}{2}$

Let $z=x-\frac{i}{2}$

$\because \quad|z|=\frac{5}{2} \quad \Rightarrow \quad x^{2}=6$

$\therefore \quad|z+3 i|=\left|x+\frac{5 i}{2}\right|=\sqrt{x^{2}+\frac{25}{4}}$

$=\sqrt{6+\frac{25}{4}}=\frac{7}{2}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.