If $p \to ( \sim p\,\, \vee \, \sim q)$ is false, then the truth values of $p$ and $q$ are respectively .
$T, F$
$F, F$
$F, T$
$T, T$
When does the current flow through the following circuit
Consider the two statements :
$(\mathrm{S} 1):(\mathrm{p} \rightarrow \mathrm{q}) \vee(\sim \mathrm{q} \rightarrow \mathrm{p})$ is a tautology
$(S2): (\mathrm{p} \wedge \sim \mathrm{q}) \wedge(\sim \mathrm{p} \vee \mathrm{q})$ is a fallacy.
Then :
The negation of the expression $q \vee((\sim q) \wedge p)$ is equivalent to
If $p$ and $q$ are simple propositions, then $p \Leftrightarrow \sim \,q$ is true when
Statement $-1 :$ $\sim (p \leftrightarrow \sim q)$ is equivalent to $p\leftrightarrow q $
Statement $-2 :$ $\sim (p \leftrightarrow \sim q)$ s a tautology