If $p \to ( \sim p\,\, \vee \, \sim q)$ is false, then the truth values of  $p$ and  $q$ are respectively .

  • [JEE MAIN 2018]
  • A

    $T, F$

  • B

    $F, F$

  • C

    $F, T$

  • D

    $T, T$

Similar Questions

When does the current flow through the following circuit

Consider the two statements :

$(\mathrm{S} 1):(\mathrm{p} \rightarrow \mathrm{q}) \vee(\sim \mathrm{q} \rightarrow \mathrm{p})$ is a tautology

$(S2): (\mathrm{p} \wedge \sim \mathrm{q}) \wedge(\sim \mathrm{p} \vee \mathrm{q})$ is a fallacy.

Then :

  • [JEE MAIN 2021]

The negation of the expression $q \vee((\sim q) \wedge p)$ is equivalent to

  • [JEE MAIN 2023]

If $p$ and $q$ are simple propositions, then $p \Leftrightarrow \sim \,q$ is true when

Statement $-1 :$ $\sim (p \leftrightarrow \sim q)$ is equivalent to $p\leftrightarrow q $

Statement $-2 :$ $\sim (p \leftrightarrow \sim q)$ s a tautology

  • [AIEEE 2009]