The Boolean expression $\left(\sim\left(p^{\wedge} q\right)\right) \vee q$ is equivalent to
$q \rightarrow\left(p^{\wedge} q\right)$
$p \rightarrow q$
$p \rightarrow(p \vee q)$
$p \rightarrow(p \rightarrow q)$
Negation of the conditional : “If it rains, I shall go to school” is
The proposition $ \sim \left( {p\,\vee \sim q} \right) \vee \sim \left( {p\, \vee q} \right)$ is logically equivalent to
If the Boolean expression $( p \Rightarrow q ) \Leftrightarrow( q *(\sim p ))$ is a tautology, then the Boolean expression $p *(\sim q )$ is equivalent to
If $q$ is false and $p\, \wedge \,q\, \leftrightarrow \,r$ is true, then which one of the following statements is a tautology?
Let $p$ and $q$ be any two logical statements and $r:p \to \left( { \sim p \vee q} \right)$. If $r$ has a truth value $F$, then the truth values of $p$ and $q$ are respectively