Which of the following is true
$p \Rightarrow q \equiv \;\sim p \Rightarrow \;\sim q$
$\sim (p \Rightarrow \;\sim q) \equiv \;\sim p \wedge q$
$\sim (\sim p \Rightarrow \,\sim q) \equiv \sim p \wedge q$
$\sim (p \Leftrightarrow q) \equiv [\sim (p \Rightarrow q) \wedge \sim (q \Rightarrow p)]$
The Boolean expression $\left(\sim\left(p^{\wedge} q\right)\right) \vee q$ is equivalent to
If $p \Rightarrow (q \vee r)$ is false, then the truth values of $p, q, r$ are respectively
Negation of $p \wedge (\sim q \vee \sim r)$ is -
Which of the following Boolean expressions is not a tautology ?
The propositions $(p \Rightarrow \;\sim p) \wedge (\sim p \Rightarrow p)$ is a