If $\cos \,\alpha + \cos \,\beta = \frac{3}{2}$ and $\sin \,\alpha + \sin \,\beta = \frac{1}{2}$ and $\theta $ is the the arithmetic mean of $\alpha $ and $\beta $ , then $\sin \,2\theta + \cos \,2\theta $ is equal to
$\frac{3}{5}$
$\frac{7}{5}$
$\frac{4}{5}$
$\frac{8}{5}$
The solution of the equation ${\cos ^2}x - 2\cos x = $ $4\sin x - \sin 2x,$ $\,(0 \le x \le \pi )$ is
If $0\, \le \,x\, < \frac{\pi }{2},$ then the number of values of $x$ for which $sin\,x -sin\,2x + sin\,3x=0,$ is
For each positive real number $\lambda$. Let $A_\lambda$ be the set of all natural numbers $n$ such that $|\sin (\sqrt{n+1})-\sin (\sqrt{n})|<\lambda$. Let $A_\lambda^c$ be the complement of $A_\lambda$ in the set of all natural numbers. Then,
The general value of $\theta $ that satisfies both the equations $cot^3\theta + 3 \sqrt 3 $ = $0$ & $cosec^5\theta + 32$ = $0$ is $(n \in I)$
If the solution of the equation $\log _{\cos x} \cot x+4 \log _{\sin x} \tan x=1, x \in\left(0, \frac{\pi}{2}\right), \quad$ is $\sin ^{-1}\left(\frac{\alpha+\sqrt{\beta}}{2}\right)$, where $\alpha, \beta$ are integers, then $\alpha+\beta$ is equal to: