If $\cos \,\alpha  + \cos \,\beta  = \frac{3}{2}$ and $\sin \,\alpha  + \sin \,\beta  = \frac{1}{2}$ and $\theta $ is the the arithmetic mean of $\alpha $ and $\beta $ , then $\sin \,2\theta  + \cos \,2\theta $ is equal to 

  • [JEE MAIN 2015]
  • A

    $\frac{3}{5}$

  • B

    $\frac{7}{5}$

  • C

    $\frac{4}{5}$

  • D

    $\frac{8}{5}$

Similar Questions

$\cot \theta = \sin 2\theta (\theta \ne n\pi $, $n$ is integer), if $\theta = $

Number of solution $(s)$ of the equation ${\cos ^2}2x + {\cos ^2}\frac{{5x}}{4} = \cos 2x\,{\cos ^2}5x$ in $\left[ {0,\frac{\pi }{3}} \right]$ is

If $2{\tan ^2}\theta = {\sec ^2}\theta ,$ then the general value of $\theta $ is

If $\sin (A + B) =1 $ and $\cos (A - B) = \frac{{\sqrt 3 }}{2},$ then the smallest positive values of $A$ and $ B$ are

Let $S=\{x \in R: \cos (x)+\cos (\sqrt{2} x)<2\}$, then

  • [KVPY 2018]