The sum of the solutions in $x \in (0,4\pi )$ of the equation $4\sin \frac{x}{3}\left( {\sin \left( {\frac{{\pi  + x}}{3}} \right)} \right)\sin \left( {\frac{{2\pi  + x}}{3}} \right) = 1$ is

  • A

    $6\pi $

  • B

    $4\pi $

  • C

    $3\pi $

  • D

    None of these

Similar Questions

If $\cos \theta + \cos 7\theta + \cos 3\theta + \cos 5\theta = 0$, then $\theta $

The number of solutions $x$ of the equation $\sin \left(x+x^2\right)-\sin \left(x^2\right)=\sin x$ in the interval $[2,3]$ is

  • [KVPY 2018]

$cos (\alpha \,-\,\beta ) = 1$ and $cos (\alpha  +\beta ) = 1/e$ , where $\alpha , \beta \in [-\pi , \pi ]$ . Number of pairs of $(\alpha ,\beta )$ which satisfy both the equations is

The number of solutions of the equation $x +2 \tan x =\frac{\pi}{2}$ in the interval $[0,2 \pi]$ is :

  • [JEE MAIN 2021]

The number of values of $\alpha $ in $[0, 2\pi]$ for which $2\,{\sin ^3}\,\alpha  - 7\,{\sin ^2}\,\alpha  + 7\,\sin \,\alpha  = 2$ , is

  • [JEE MAIN 2014]