Find the principal solutions of the equation $\sin x=\frac{\sqrt{3}}{2}$
We know that, $\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}$ and $\sin \frac{2 \pi}{3}=\sin \left(\pi-\frac{\pi}{3}\right)=\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}$
Therefore, principal solutions are $x=\frac{\pi}{3}$ and $\frac{2 \pi}{3}$.
The sum of all $x \in[0, \pi]$ which satisfy the equation $\sin x+\frac{1}{2} \cos x=\sin ^2\left(x+\frac{\pi}{4}\right)$ is
The roots of the equation $1 - \cos \theta = \sin \theta .\sin \frac{\theta }{2}$ is
The solution of $\frac{1}{2} +cosx + cos2x + cos3x + cos4x = 0$ is
If the solution for $\theta $ of $\cos p\theta + \cos q\theta = 0,\;p > 0,\;q > 0$ are in $A.P.$, then the numerically smallest common difference of $A.P.$ is
The solution of the equation $\left| {\,\begin{array}{*{20}{c}}{\cos \theta }&{\sin \theta }&{\cos \theta }\\{ - \sin \theta }&{\cos \theta }&{\sin \theta }\\{ - \cos \theta }&{ - \sin \theta }&{\cos \theta }\end{array}\,} \right| = 0$, is