Find the principal solutions of the equation $\sin x=\frac{\sqrt{3}}{2}$
We know that, $\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}$ and $\sin \frac{2 \pi}{3}=\sin \left(\pi-\frac{\pi}{3}\right)=\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}$
Therefore, principal solutions are $x=\frac{\pi}{3}$ and $\frac{2 \pi}{3}$.
The number of solutions of the equation $sin\, 2x - 2\,cos\,x+ 4\,sin\, x\, = 4$ in the interval $[0, 5\pi ]$ is
The number of distinct solutions of the equation $\log _{\frac{1}{2}}|\sin x|=2-\log _{\frac{1}{2}}|\cos x|$ in the interval $[0,2 \pi],$ is
The number of integral value $(s)$ of $'p'$ for which the equation $99\cos 2\theta - 20\sin 2\theta = 20p + 35$ , will have a solution is
If $tanA + cotA = 4$, then $tan^4A + cot^4A$ is equal to
The number of solution of the given equation $a\sin x + b\cos x = c$ , where $|c|\, > \,\sqrt {{a^2} + {b^2}} ,$ is