यदि $\operatorname{cosec} \theta=\frac{ p + q }{ p - q } \quad( p \neq q \neq 0)$ है, तो $\left|\cot \left(\frac{\pi}{4}+\frac{\theta}{2}\right)\right|$ बराबर है
$\sqrt {\frac{p}{q}} $
$\sqrt {\frac{q}{p}} $
$\sqrt {pq} $
$pq$
माना $f:[0,2] \rightarrow R$ एक फलन है जो
$f(x)=(3-\sin (2 \pi x)) \sin \left(\pi x-\frac{\pi}{4}\right)-\sin \left(3 \pi x+\frac{\pi}{4}\right)$
द्वारा परिभाषित है। यदि $\alpha, \beta \in[0,2]$ इस प्रकार है कि $\{ x \in[0,2]: f( x ) \geq 0\}=[\alpha, \beta]$ हो, तो $\beta-\alpha$ का मान होगा
यदि समीकरण $4 \cos \theta+5 \sin \theta=1$. का हल $\alpha,-\frac{\pi}{2}<\alpha<\frac{\pi}{2}$ है, तो $\tan \alpha$ का मान है
अंतराल $[0,2 \pi]$ में समीकरण $\frac{5}{4} \cos ^2 2 x+\cos ^4 x+\sin ^4 x+\cos ^6 x+\sin ^6 x=2$ के विभिन्न हलों (distinct solutions) की संख्या है।
समीकरण ${\sin ^4}x + {\cos ^4}x + \sin 2x + \alpha = 0$, $\alpha $ के निम्न मान के लिए हल योग्य है
यदि $\frac{{\tan 3\theta - 1}}{{\tan 3\theta + 1}} = \sqrt 3 $, तो $\theta $ का व्यापक मान है