समीकरण  ${\sin ^4}x + {\cos ^4}x + \sin 2x + \alpha  = 0$, $\alpha $ के निम्न मान के लिए हल योग्य है

  • A

    $ - \frac{1}{2} \le \alpha \le \frac{1}{2}$

  • B

    $ - 3 \le \alpha \le 1$

  • C

    $ - \frac{3}{2} \le \alpha \le \frac{1}{2}$

  • D

    $ - 1 \le \alpha \le 1$

Similar Questions

यदि $2\sin \theta  + \tan \theta  = 0$, तो $\theta $ के व्यापक मान हैं

$\lambda$ के सभी मानों जिनके लिए समीकरण $\cos ^2 2 x-2 \sin ^4 x-2 \cos ^2 x=\lambda$ का एक वास्तविक हल $x$ है का समुच्चय है :-

  • [JEE MAIN 2023]

यदि समीकरण $\log _{\cos x} \cot x+4 \log _{\sin x} \tan x=1, x \in\left(0, \frac{\pi}{2}\right)$ का हल $\sin ^{-1}\left(\frac{\alpha+\sqrt{\beta}}{2}\right)$ हैं, जहाँ, $\alpha, \beta$ पूर्णांक है, तो $\alpha+\beta$ बराबर है :

  • [JEE MAIN 2023]

यदि समीकरण $\cos 2 \theta \cos \frac{\theta}{2}=\cos 3 \theta \cos \frac{9 \theta}{2}$ को संतुष्ट करने वाले अंतराल $[-\pi, \pi]$ में $\theta$ के धनात्मक तथा ऋणात्मक मानों की संख्या क्रमशः $m$ तथा $n$ है, तो $\mathrm{mn}$ बराबर है____________.

  • [JEE MAIN 2023]

समीकरण, $\sin ^{7} x +\cos ^{7} x =1$ के $x \in[0,4 \pi]$ में हलों की संख्या है -

  • [JEE MAIN 2021]