यदि $\left(2+\frac{x}{3}\right)^{55}$ का $x$ की आरोही घातों में प्रसार करने पर, प्रसार में दो क्रमिक पदों में $x$ की घातें समान हैं, तो यह पद हैं
$8$ वाँ तथा $9$ वाँ
$7$ वाँ तथा $8$ वाँ
$28$ वाँ तथा $29$ वाँ
$27$ वाँ तथा $28$ वाँ
यदि $\left(a x^2+\frac{1}{2 b x}\right)^{11}$ में $x^7$ तथा in $\left(a x-\frac{1}{3 b x^2}\right)^{11}$ में $\mathrm{x}^{-7}$ के गुणांक बराबर हैं, तो
${\left( {\frac{{{x^2}}}{2} - \frac{2}{x}} \right)^8}$ के प्रसार में ${x^7}$ का गुणांक होगा
$\left(1+x^2\right)^4\left(1+x^3\right)^7\left(1+x^4\right)^{12}$ विस्तार में (expansion) $x^{11}$ का गुणांक (coefficient) है-
${\left( {{x^4} - \frac{1}{{{x^3}}}} \right)^{15}}$ के विस्तार में ${x^{32}}$ का गुणांक होगा
${(1 + x + {x^3} + {x^4})^{10}}$ के विस्तार में ${x^4}$ का गुणांक होगा