If ${Z_1} \ne 0$ and $Z_2$ be two complex numbers such that $\frac{{{Z_2}}}{{{Z_1}}}$ is a purely imaginary number, then $\left| {\frac{{2{Z_1} + 3{Z_2}}}{{2{Z_1} - 3{Z_2}}}} \right|$ is equal to 

  • [JEE MAIN 2013]
  • A

    $2$

  • B

    $5$

  • C

    $3$

  • D

    $1$

Similar Questions

Let $z_1$ and $z_2$ be two complex number such that $z_1$ $+z_2=5$ and $z_1^3+z_2^3=20+15 i$. Then $\left|z_1^4+z_2^4\right|$ equals-

  • [JEE MAIN 2024]

If ${(\sqrt 8 + i)^{50}} = {3^{49}}(a + ib)$ then ${a^2} + {b^2}$ is

Let $\bar{z}$ denote the complex conjugate of a complex number $z$ and let $i=\sqrt{-1}$. In the set of complex numbers, the number of distinct roots of the equation

$\bar{z}-z^2=i\left(\bar{z}+z^2\right)$ is. . . . . .

  • [IIT 2022]

If complex numbers $z_1$ and $z_2$ both satisfy $z + \overline z  = 2 | z -1 |$ and $arg(z_1 -z_2) = \frac{\pi}{3} ,$ then value of $Im (z_1 + z_2)$ is, where $Im (z)$ denotes imaginary part of $z$ -

If $z=x+i y, x y \neq 0$, satisfies the equation $z^2+i \bar{z}=0$, then $\left|z^2\right|$ is equal to:

  • [JEE MAIN 2024]