If ${z_1}$ and ${z_2}$ are two complex numbers satisfying the equation $\left| \frac{z_1 +z_2}{z_1 - z_2} \right|=1$, then $\frac{{{z_1}}}{{{z_2}}}$ is a number which is
Positive real
Negative real
Zero or purely imaginary
None of these
If $|{z_1}|\, = \,|{z_2}|$ and $arg\,\,\left( {\frac{{{z_1}}}{{{z_2}}}} \right) = \pi $, then ${z_1} + {z_2}$ is equal to
If ${z_1} = a + ib$ and ${z_2} = c + id$ are complex numbers such that $|{z_1}| = |{z_2}| = 1$ and $R({z_1}\overline {{z_2}} ) = 0,$ then the pair of complex numbers ${w_1} = a + ic$ and ${w_2} = b + id$ satisfies
Let $z _{1}$ and $z _{2}$ be two complex numbers such that $\overline{ z }_{1}=i \overline{ z }_{2}$ and $\arg \left(\frac{ z _{1}}{\overline{ z }_{2}}\right)=\pi$. Then
Find the number of non-zero integral solutions of the equation $|1-i|^{x}=2^{x}$
The modulus and amplitude of $\frac{{1 + 2i}}{{1 - {{(1 - i)}^2}}}$ are