Let $\bar{z}$ denote the complex conjugate of a complex number $z$ and let $i=\sqrt{-1}$. In the set of complex numbers, the number of distinct roots of the equation

$\bar{z}-z^2=i\left(\bar{z}+z^2\right)$ is. . . . . .

  • [IIT 2022]
  • A

    $2$

  • B

    $3$

  • C

    $4$

  • D

    $5$

Similar Questions

If $z_1, z_2  $ are any two complex numbers, then $|{z_1} + \sqrt {z_1^2 - z_2^2} |$ $ + |{z_1} - \sqrt {z_1^2 - z_2^2} |$ is equal to

If ${z_1},{z_2}$ and ${z_3},{z_4}$ are two pairs of conjugate complex numbers, then $arg\left( {\frac{{{z_1}}}{{{z_4}}}} \right) + arg\left( {\frac{{{z_2}}}{{{z_3}}}} \right)$ equals

If $z = \cos \frac{\pi }{6} + i\sin \frac{\pi }{6}$ then

The moduli of two complex numbers are less than unity, then the modulus of the sum of these complex numbers

Let $S$ be the set of all complex numbers $z$ satisfying $\left|z^2+z+1\right|=1$. Then which of the following statements is/are $TRUE$?

$(A)$ $\left|z+\frac{1}{2}\right| \leq \frac{1}{2}$ for all $z \in S$  $(B)$ $|z| \leq 2$ for all $z \in S$

$(C)$ $\left|z+\frac{1}{2}\right| \geq \frac{1}{2}$ for all $z \in S$  $(D)$ The set $S$ has exactly four elements

  • [IIT 2020]