If $\frac{{z - \alpha }}{{z + \alpha }}\left( {\alpha  \in R} \right)$ is a purely imaginary number and $\left| z \right| = 2$, then a value of $\alpha $ is

  • [JEE MAIN 2019]
  • A

    $2$

  • B

    $1$

  • C

    $\frac{1}{2}$

  • D

    $\sqrt 2$

Similar Questions

Find the modulus and the argument of the complex number $z=-\sqrt{3}+i$

The amplitude of the complex number $z = \sin \alpha + i(1 - \cos \alpha )$ is

Let $\bar{z}$ denote the complex conjugate of a complex number $z$. If $z$ is a non-zero complex number for which both real and imaginary parts of

$(\bar{z})^2+\frac{1}{z^2}$

are integers, then which of the following is/are possible value($s$) of $|z|$ ?

  • [IIT 2022]

The conjugate of complex number $\frac{{2 - 3i}}{{4 - i}},$ is

Find the complex number z satisfying the equations $\left| {\frac{{z - 12}}{{z - 8i}}} \right| = \frac{5}{3},\left| {\frac{{z - 4}}{{z - 8}}} \right| = 1$