If $\frac{{z - \alpha }}{{z + \alpha }}\left( {\alpha \in R} \right)$ is a purely imaginary number and $\left| z \right| = 2$, then a value of $\alpha $ is
$2$
$1$
$\frac{1}{2}$
$\sqrt 2$
Find the modulus and the argument of the complex number $z=-\sqrt{3}+i$
The amplitude of the complex number $z = \sin \alpha + i(1 - \cos \alpha )$ is
Let $\bar{z}$ denote the complex conjugate of a complex number $z$. If $z$ is a non-zero complex number for which both real and imaginary parts of
$(\bar{z})^2+\frac{1}{z^2}$
are integers, then which of the following is/are possible value($s$) of $|z|$ ?
The conjugate of complex number $\frac{{2 - 3i}}{{4 - i}},$ is
Find the complex number z satisfying the equations $\left| {\frac{{z - 12}}{{z - 8i}}} \right| = \frac{5}{3},\left| {\frac{{z - 4}}{{z - 8}}} \right| = 1$