4-1.Complex numbers
hard

If $z=\frac{1}{2}-2 i$, is such that $|z+1|=\alpha z+\beta(1+i), i=\sqrt{-1}$ and $\alpha, \beta \in R \quad$, then $\alpha+\beta$ is equal to

A

$-4$

B

$3$

C

$2$

D

$-1$

(JEE MAIN-2024)

Solution

$ \mathrm{z}=\frac{1}{2}-2 \mathrm{i} $

$ |\mathrm{z}+1|=\alpha \mathrm{z}+\beta(1+\mathrm{i}) $

$ \left|\frac{3}{2}-2 \mathrm{i}\right|=\frac{\alpha}{2}-2 \alpha \mathrm{i}+\beta+\beta \mathrm{i} $

$ \left|\frac{3}{2}-2 \mathrm{i}\right|=\left(\frac{\alpha}{2}+\beta\right)+(\beta-2 \alpha) \mathrm{i} $

$ \beta=2 \alpha \text { and } \frac{\alpha}{2}+\beta=\sqrt{\frac{9}{4}+4} $

$ \alpha+\beta=3$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.