4-1.Complex numbers
medium

If $\frac{{z - i}}{{z + i}}(z \ne - i)$ is a purely imaginary number, then $z.\bar z$ is equal to

A

$0$

B

$1$

C

$2$

D

None of these

Solution

(b) Here $\frac{{z – i}}{{z + i}} = \frac{{x + i(y – 1)}}{{x + i(y + 1)}}.\frac{{x – i(y + 1)}}{{x – i(y + 1)}}$
$ = \frac{{({x^2} + {y^2} – 1) + i( – 2x)}}{{{x^2} + {{(y + 1)}^2}}}$
As $\frac{{z – i}}{{z + i}}$ is purely imaginary, we get
${x^2} + {y^2} – 1 = 0$==> ${x^2} + {y^2} = 1$==>$z\overline z = 1$.
 

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.