- Home
- Standard 11
- Mathematics
4-1.Complex numbers
medium
If $\frac{{z - i}}{{z + i}}(z \ne - i)$ is a purely imaginary number, then $z.\bar z$ is equal to
A
$0$
B
$1$
C
$2$
D
None of these
Solution
(b) Here $\frac{{z – i}}{{z + i}} = \frac{{x + i(y – 1)}}{{x + i(y + 1)}}.\frac{{x – i(y + 1)}}{{x – i(y + 1)}}$
$ = \frac{{({x^2} + {y^2} – 1) + i( – 2x)}}{{{x^2} + {{(y + 1)}^2}}}$
As $\frac{{z – i}}{{z + i}}$ is purely imaginary, we get
${x^2} + {y^2} – 1 = 0$==> ${x^2} + {y^2} = 1$==>$z\overline z = 1$.
Standard 11
Mathematics