यदि $\frac{ z -\alpha}{ z +\alpha}(\alpha \in R )$ एक शुद्ध रूप से काल्पनिक संख्या है, तथा $| Z |=2$ है, तो $\alpha$ का एक मान है

  • [JEE MAIN 2019]
  • A

    $2$

  • B

    $1$

  • C

    $\frac{1}{2}$

  • D

    $\sqrt 2$

Similar Questions

यदि$z$ एक सम्मिश्र संख्या हो, तो निम्न में से कौन सा सम्बन्ध सत्य नहीं है

यदि $|z|\, = 4$और $arg\,\,z = \frac{{5\pi }}{6},$तो $z = $

मापांक और कोणांक ज्ञात कीजिए

$z=-\sqrt{3}+i$

यदि $\mathrm{z}=\mathrm{x}+\mathrm{i} y, \mathrm{xy} \neq 0$, समीकरण $z^2+i \bar{z}=0$, को संतुष्ट करता है, तो $\left|z^2\right|$ बराबर है :

  • [JEE MAIN 2024]

माना $S=\left\{z \in C : z^2+\bar{z}=0\right\}$. है। तब $\sum_{z \in S}(\operatorname{Re}(z)+\operatorname{Im}(z))$ बराबर है $.........$

  • [JEE MAIN 2022]