यदि $z$ पूर्णत: अधिकल्पित संख्या इस प्रकार हो कि ${\mathop{\rm Im}\nolimits} (z) < 0$, तब $arg\,(z)$=
$\pi $
$\frac{\pi }{2}$
$0$
$ - \frac{\pi }{2}$
यदि कोणांक $(z) = \theta $, तो कोणांक $\,(\overline z ) = $
$arg\,(5 - \sqrt 3 i) = $
यदि $|z|\, = 1$ तथा $\omega = \frac{{z - 1}}{{z + 1}}$ (जहाँ $z \ne - 1)$, तब ${\mathop{\rm Re}\nolimits} (\omega )$का मान होगा
माना $\mathrm{z}=1+\mathrm{i}$ तथा $\mathrm{z}_1=\frac{1+\mathrm{i} \overline{\mathrm{z}}}{\overline{\mathrm{z}}(1-\mathrm{z})+\frac{1}{\mathrm{z}}}$ है तो $\frac{12}{\pi} \arg \left(\mathrm{z}_1\right)$ बराबर है____________.
यदि $\frac{ z -\alpha}{ z +\alpha}(\alpha \in R )$ एक शुद्ध रूप से काल्पनिक संख्या है, तथा $| Z |=2$ है, तो $\alpha$ का एक मान है