જો $f\left( x \right) = {\log _e}\,\left( {\frac{{1 - x}}{{1 + x}}} \right)$, $\left| x \right| < 1$, તો  $f\left( {\frac{{2x}}{{1 + {x^2}}}} \right)$ મેળવો.

  • [JEE MAIN 2019]
  • A

    $2f\left( x \right)$

  • B

    ${\left( {f\left( x \right)} \right)^2}$

  • C

    $2f\left( x^2 \right)$

  • D

    $ - 2f\left( x \right)$

Similar Questions

જો $y = 3[x] + 1 = 4[x -1] -10$ હોય તો $[x + 2y]$  = ........... (જ્યા $[.]$ = $G.I.F.$)

ધારોકે $f: R \rightarrow R$ એ કોઈ $m$ માટે વ્યાખ્યાયિત એવુ વિધેય છે કે જયાં $f(x)=\log _{\sqrt{m}}\{\sqrt{2}(\sin x-\cos x+m-2)\}$ અને $f$ નો વિસ્તાર $[0,2]$ છે. તો $m$ નું મૂલ્ય $.........$ છે.

  • [JEE MAIN 2023]

કોઈક વાસ્તવિક અચળાંક $a$ માટે વિધેય $f: R-\{-a\} \rightarrow R$ તથા $f(x)=\frac{a-x}{a+x}$ હોય વધારામાં ધારો કે કોઈક વાસ્તવિક સંખ્યા $x \neq- a$ અને $f( x ) \neq- a$ માટે $( fof )( x )= x$ થાય તો $\left(-\frac{1}{2}\right)$ ની કિમત શોધો 

  • [JEE MAIN 2020]

ધારો કે $f ^1( x )=\frac{3 x +2}{2 x +3}, x \in R -\left\{\frac{-3}{2}\right\}$ છે. $n \geq 2$, માટે $f ^{ n }( x )= f ^1 0 f ^{ n -1}( x )$ પ્રમાણે વ્યાખ્યાયિત કરો.જો $f ^5( x )=\frac{ ax + b }{ bx + a }, \operatorname{gcd}( a , b )=1$, જ્યાં $a$ અને $b$ પરસ્પર અવિભાજ્ય છે,તો  $a+b=............$.

  • [JEE MAIN 2023]

જો $x = {\log _2}\left( {\sqrt {56 + \sqrt {56 + \sqrt {56 +  .... + \infty } } } } \right)$ હોય તો $x$ ની કિમત .......... થાય.