જો $f\left( x \right) = {\log _e}\,\left( {\frac{{1 - x}}{{1 + x}}} \right)$, $\left| x \right| < 1$, તો $f\left( {\frac{{2x}}{{1 + {x^2}}}} \right)$ મેળવો.
$2f\left( x \right)$
${\left( {f\left( x \right)} \right)^2}$
$2f\left( x^2 \right)$
$ - 2f\left( x \right)$
જો $\phi (x) = (x) + {2^{\log _x^3}} - {3^{\log _x^2}}$ હોય તો
$f$ એ $x$ અને $y$ ની બધી જ વાસ્તવિક કિમત માટે $f(xy) = \frac{f(x)}{y}$ શક્ય છે. જો $ f(30) = 20,$ તો $f(40)$ ની કિમત .......... થાય.
જો $f(x) = {\cos ^{ - 1}}\left( {\frac{{2x}}{{1 + {x^2}}}} \right) + {\sin ^{ - 1}}\left( {\frac{{1 - {x^2}}}{{1 + {x^2}}}} \right)$ તો $f(1) + f(2)$ ની કિમંત મેળવો.
આપલે વિધેય $f(x) = \frac{{{a^x} + {a^{ - x}}}}{2},\;(a > 2)$. તો $f(x + y) + f(x - y) = $
અહી ગણ $A$ અને $B$ એ વિધેય $f(x)=\frac{1}{\sqrt{\lceil x\rceil-x}}$ નો પ્રદેશ અને વિસ્તાર દર્શાવે છે. કે જ્યાં $\lceil x \rceil$ એ ન્યૂનતમ પૃણાંક વિધેય છે.આપેલ વિધાન જુઓ.
$( S 1): A \cap B =(1, \infty)-N$ અને
$( S 2): A \cup B=(1, \infty)$