1.Relation and Function
hard

વિધેય $\mathrm{f}(\mathrm{x})=\log _{\sqrt{5}}(3+\cos \left(\frac{3 \pi}{4}+\mathrm{x}\right)+\cos \left(\frac{\pi}{4}+\mathrm{x}\right)+\cos \left(\frac{\pi}{4}-\mathrm{x}\right)$

$-\cos \left(\frac{3 \pi}{4}-\mathrm{x}\right))$ નો વિસ્તાર મેળવો.

A

$(0, \sqrt{5})$

B

$[-2,2]$

C

$\left[\frac{1}{\sqrt{5}}, \sqrt{5}\right]$

D

$[0,2]$

(JEE MAIN-2021)

Solution

$f(x)=\log _{\sqrt{5}}$

$(3+\cos \left(\frac{3 \pi}{4}+x\right)+\cos \left(\frac{\pi}{4}+x\right)+\cos \left(\frac{\pi}{4}-x\right)$

$-\cos \left(\frac{3 \pi}{4}-x\right))$

$f(x)=\log _{\sqrt{5}}\left[3+2 \cos \left(\frac{\pi}{4}\right) \cos (x)-2 \sin \left(\frac{3 \pi}{4}\right) \sin (x)\right]$

$f(x)=\log _{\sqrt{5}}[3+\sqrt{2}(\cos x-\sin x)]$

$\text { Since }-\sqrt{2} \leq \cos x-\sin x \leq \sqrt{2}$

$\Rightarrow \log _{\sqrt{5}}\left[3+\sqrt{2}(-\sqrt{2}) \leq f(x) \leq \log _{\sqrt{5}}[3+\sqrt{2}(\sqrt{2})]\right]$

$\Rightarrow \log _{\sqrt{5}}(1) \leq f(x) \leq \log _{\sqrt{5}}(5)$

So Range of $f(x)$ is $[0,2]$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.