If $^n{C_{r - 2}} = 36$ , $^n{C_{r - 1}} = 84$ and $^n{C_r} = 126$ , then value of $^n{C_{2r}}$ is
$9$
$36$
$66$
$126$
Let $\alpha>0, \beta>0$ be such that $\alpha^{3}+\beta^{2}=4 .$ If the maximum value of the term independent of $x$ in the binomial expansion of $\left(\alpha x^{\frac{1}{9}}+\beta x^{-\frac{1}{6}}\right)^{10}$ is $10 k$ then $\mathrm{k}$ is equal to
Find the value of $\left(a^{2}+\sqrt{a^{2}-1}\right)^{4}+\left(a^{2}-\sqrt{a^{2}-1}\right)^{4}$
In the expansion of ${\left( {x + \frac{2}{{{x^2}}}} \right)^{15}}$, the term independent of $x$ is
If the coefficients of $x^2$ and $x^3$ are both zero, in the expansion of the expression $(1 + ax + bx^2) (1 -3x)^{t5}$ in powers of $x$, then the ordered pair $(a, b)$ is equal to
Let $0 \leq \mathrm{r} \leq \mathrm{n}$. If ${ }^{\mathrm{n}+1} \mathrm{C}_{\mathrm{r}+1}:{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}:{ }^{\mathrm{n}-1} \mathrm{C}_{\mathrm{r}-1}=55: 35: 21$, then $2 n+5 r$ is equal to: