- Home
- Standard 12
- Mathematics
1.Relation and Function
normal
જો $f(x)$ માટે $f\left( {\frac{{5x - 3y}}{2}} \right)\, = \,\frac{{5f(x) - 3f(y)}}{2}\,\forall x,y\in R$ $f(0) = 1, f '(0) = 2$ હોય તો $sin \ (f(x))$ નો આવર્તમાન મેળવો.
A
$2 \pi$
B
$\pi$
C
$3 \pi$
D
$4 \pi$
Solution
Given $f\left(\frac{5 x-3 y}{5-3}\right)=\frac{5 f(x)-3 f(y)}{5-3}$
Which satisfies section formula for abscissa on
$L.H.S.$ and ordinate on $R.H.S.$
Hence $f(x)$ must be linear function
let $f(x)=a x+b$
$f(0)=b=1 \Rightarrow f(x)=2 x+1$
$f(0)=a=2$
period of $\sin (2 \mathrm{x}+1)$ is $\pi$
Standard 12
Mathematics
Similar Questions
medium