વિધેય $f(x) = \frac{{{{\sec }^{ - 1}}x}}{{\sqrt {x - [x]} }},$ નો પ્રદેશ મેળવો. ( કે જ્યાં $[.]$ એ મહતમ પૂર્ણાંક વિધેય છે .)

  • A

    $R$

  • B

    $R - \{ ( - 1,\;1) \cup (n|n \in Z)\} $

  • C

    ${R^ + } - (0,\;1)$

  • D

    ${R^ + } - \{ n|n \in N\} $

Similar Questions

સાબિત કરો કે વિધેય $f: N \rightarrow N ,$ $f(1)=f(2)=1$ અને પ્રત્યેક $x>2$ માટે $f(x)=x-1$, દ્વારા વ્યાખ્યાયિત હોય તો વ્યાપ્ત છે, પરંતુ એક-એક નથી. 

જો $f(x + ay,\;x - ay) = axy$, તો $f(x,\;y) =$

$f :\{1,3,5, 7, \ldots \ldots . .99\} \rightarrow\{2,4,6,8, \ldots \ldots, 100\}$ પરના એક-એક અને વ્યાપ્ત વિધેયની સંખ્યા મેળવો કે જેથી $f(3) \geq f(9) \geq f(15) \geq f(21) \geq \ldots \ldots f(99), \quad$ થાય.

  • [JEE MAIN 2022]

જો $\mathrm{R}=\left\{(\mathrm{x}, \mathrm{y}): \mathrm{x}, \mathrm{y} \in \mathrm{Z}, \mathrm{x}^{2}+3 \mathrm{y}^{2} \leq 8\right\}$ એ પૂર્ણાક સંખ્યાના ગણ $\mathrm{Z}$ પર સંબંધ દર્શાવે તો $\mathrm{R}^{-1}$ નો પ્રદેશ ગણ મેળવો 

  • [JEE MAIN 2020]

જો ${x_1},{x_2} \in [ - 1,\,1]$ માટે $f({x_1}) - f({x_2}) = f\left( {\frac{{{x_1} - {x_2}}}{{1 - {x_1}{x_2}}}} \right)$, તો $f(x)  =$