- Home
- Standard 11
- Mathematics
4-1.Complex numbers
normal
If $z$ is a complex number satisfying $|z|^2 - |z| - 2 < 0$, then the value of $|z^2 + z sin \theta|$ , for all values of $\theta$ , is
A
equal to $4$
B
equal to $6$
C
more than $6$
D
less than $6$
Solution
$|z|^{2}-|z|-2<0$
$\Rightarrow(|z|-2)(|z|+1)<0 \Rightarrow|z|<2$
Now $\left| {{z^2} + z\sin \theta } \right| \le {\left| z \right|^2} + |z\sin \theta | \le |z{|^2} + |z| < 4 + 2 = 6$
Standard 11
Mathematics