4-1.Complex numbers
normal

If $z$ is a complex number satisfying $|z|^2 - |z| - 2 < 0$, then the value of $|z^2 + z sin \theta|$ , for all values of $\theta$ , is

A

equal to $4$

B

equal to $6$

C

more than $6$

D

less than $6$

Solution

$|z|^{2}-|z|-2<0$

$\Rightarrow(|z|-2)(|z|+1)<0 \Rightarrow|z|<2$

Now $\left| {{z^2} + z\sin \theta } \right| \le {\left| z \right|^2} + |z\sin \theta | \le |z{|^2} + |z| < 4 + 2 = 6$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.