If $z$ is a complex number satisfying $|z|^2 - |z| - 2 < 0$, then the value of $|z^2 + z sin \theta|$ , for all values of $\theta$ , is

  • A

    equal to $4$

  • B

    equal to $6$

  • C

    more than $6$

  • D

    less than $6$

Similar Questions

If $z = x + iy\, (x, y \in R,\, x \neq \, -1/2)$ , the number of values of $z$ satisfying ${\left| z \right|^n}\, = \,{z^2}{\left| z \right|^{n - 2}}\, + \,z{\left| z \right|^{n - 2}}\, + \,1\,.\,\left( {n \in N,n > 1} \right)$ is

Let $z$ satisfy $\left| z \right| = 1$ and $z = 1 - \vec z$.

Statement $1$ : $z$ is a real number

Statement $2$ : Principal argument of $z$ is $\frac{\pi }{3}$

  • [JEE MAIN 2013]

If $z =2+3 i$, then $z ^{5}+(\overline{ z })^{5}$ is equal to.

  • [JEE MAIN 2022]

If $z$ is a complex number, then $(\overline {{z^{ - 1}}} )(\overline z ) = $

If ${z_1}$ and ${z_2}$ are two complex numbers, then $|{z_1} - {z_2}|$ is