The solutions of equation in $z$, $| z |^2 -(z + \bar{z}) + i(z - \bar{z})$ + $2$ = $0$ are $(i = \sqrt{-1})$

  • A

    $2 + i$, $1 -i$

  • B

    $1 + i$, $1 -i$

  • C

    $1 + 2i$, $-1 -i$

  • D

    $1 + i$, $1 + i$

Similar Questions

If $\bar z$ be the conjugate of the complex number $z$, then which of the following relations is false

Let $a = lm\left( {\frac{{1 + {z^2}}}{{2iz}}} \right)$, where $z$ is any non-zero complex number. The set $A = \{ a:\left| z \right| = 1\,and\,z \ne  \pm 1\} $ is equal to

  • [JEE MAIN 2013]

The complex numbers $sin\ x + i\ cos\ 2x$ and $cos\ x\ -\ i\ sin\ 2x$ are conjugate to each other, for

The value of $|z - 5|$if $z = x + iy$, is

Find the modulus and argument of the complex numbers:

$\frac{1}{1+i}$