- Home
- Standard 11
- Mathematics
4-1.Complex numbers
normal
The solutions of equation in $z$, $| z |^2 -(z + \bar{z}) + i(z - \bar{z})$ + $2$ = $0$ are $(i = \sqrt{-1})$
A
$2 + i$, $1 -i$
B
$1 + i$, $1 -i$
C
$1 + 2i$, $-1 -i$
D
$1 + i$, $1 + i$
Solution
$z \bar{z}-z(1-i)-\bar{z}(1+i)+(1+i)(1-i)=0$
$(z-(1+i))(\bar{z}-(1-i))=0$
$\Rightarrow z=1+i, \bar{z}=1-i$
Standard 11
Mathematics
Similar Questions
Let $z$ be complex number satisfying $|z|^3+2 z^2+4 z-8=0$, where $\bar{z}$ denotes the complex conjugate of $z$. Let the imaginary part of $z$ be nonzero.
Match each entry in List-$I$ to the correct entries in List-$II$.
List-$I$ | List-$II$ |
($P$) $|z|^2$ is equal to | ($1$) $12$ |
($Q$) $|z-\bar{z}|^2$ is equal to | ($2$) $4$ |
($R$) $|z|^2+|z+\bar{z}|^2$ is equal to | ($3$) $8$ |
($S$) $|z+1|^2$ is equal to | ($4$) $10$ |
($5$) $7$ |
The correct option is: