- Home
- Standard 11
- Mathematics
Consider the following two statements :
Statement $I$ : For any two non-zero complex numbers $\mathrm{z}_1, \mathrm{z}_2$
$\left(\left|z_1\right|+\left|z_2\right|\right)\left|\frac{z_1}{\left|z_1\right|}+\frac{z_2}{\left|z_2\right|}\right| \leq 2\left(\left|z_1\right|+\left|z_2\right|\right)$ and
Statement $II$ : If $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are three distinct complex numbers and a, b, c are three positive real numbers such that $\frac{a}{|y-z|}=\frac{b}{|z-x|}=\frac{c}{|x-y|}$, then
$\frac{\mathrm{a}^2}{\mathrm{y}-\mathrm{z}}+\frac{\mathrm{b}^2}{\mathrm{z}-\mathrm{x}}+\frac{\mathrm{c}^2}{\mathrm{x}-\mathrm{y}}=1$
Between the above two statements,
both Statement $I$ and Statement $II$ are incorrect.
Statement $I$ is incorrect but Statement $II$ is correct.
Statement $I$ is correct but Statement $II$ is incorrect.
both Statement $I$ and Statement $II$ are correct.
Solution
Statement $I$ :
$\left(\left|z_1\right|+\left|z_2\right|\right)\left|\frac{z_1}{\left|z_1\right|}+\frac{z_2}{\left|z_2\right|}\right|$
Since $\left|\frac{z_1}{\left|z_1\right|}+\frac{z_2}{\left|z_2\right|}\right| \leq\left|\frac{z_1}{\left|z_1\right|}\right|+\left|\frac{z_2}{\left|z_2\right|}\right|$
$ \left|\frac{z_1}{\left|z_1\right|}+\frac{z_2}{\left|z_2\right|}\right| \leq \frac{\left|z_1\right|}{\left|z_1\right|}+\frac{\left|z_2\right|}{\left|z_2\right|} $
$ \left|\frac{z_1}{\left|z_1\right|}+\frac{z_2}{\left|z_2\right|}\right| \leq 2$
$\left(\left|z_1\right|+\left|z_2\right|\right)\left(\left|\frac{z_1}{\left|z_1\right|}+\frac{z_2}{\left|z_2\right|}\right|\right) \leq 2\left(\left|z_1\right|+\left|z_2\right|\right)$
$\therefore$ statement $I$ is correct
For Statement $II$ :
$ \frac{a}{|y-z|}=\frac{b}{|z-x|}=\frac{c}{|x-y|} $
$ \frac{a^2}{|y-z|^2}=\frac{b^2}{|z-x|^2}=\frac{c^2}{|x-y|^2}=\lambda $
$ a^2=\lambda\left(|y-z|^2\right)=\lambda(y-z)(\bar{y}-\bar{z}) $
$ b^2=\lambda(z-x)(\bar{z}-\bar{x}) \text { and } c^2=\lambda(x-y)(\bar{x}-\bar{y}) $
$ \frac{a^2}{y-z}+\frac{b^2}{z-x}+\frac{c^2}{x-y}=\lambda(\bar{y}-\bar{z}+\bar{z}-\bar{x}+\bar{x}-\bar{y})=0$
Statement $II$ is false