If $PQ$ is a double ordinate of the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ such that $OPQ$ is an equilateral triangle, $O$ being the center of the hyperbola. then the $'e'$ eccentricity of the hyperbola, satisfies
$1\, < \,e\,<\,\frac{2}{{\sqrt 3 }}$
$e\, = \,\frac{2}{{\sqrt 3 }}$
$e\, = \,\frac{{\sqrt 3 }}{2}$
$e\, > \,\frac{2}{{\sqrt 3 }}$
Let the eccentricity of the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ be reciprocal to that of the ellips $x^2+4 y^2=4$. If the hyperbola passes through a focus of the ellipse, then
$(A)$ the equation of the hyperbola is $\frac{x^2}{3}-\frac{y^2}{2}=1$
$(B)$ a focus of the hyperbola is $(2,0)$
$(C)$ the eccentricity of the hyperbola is $\sqrt{\frac{5}{3}}$
$(D)$ the equation of the hyperbola is $x^2-3 y^2=3$
Eccentricity of rectangular hyperbola is
Let the eccentricity of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ be $\frac{5}{4}$. If the equation of the normal at the point $\left(\frac{8}{\sqrt{5}}, \frac{12}{5}\right)$ on the hyperbola is $8 \sqrt{5} x +\beta y =\lambda$, then $\lambda-\beta$ is equal to
Find the equation of the hyperbola satisfying the give conditions: Vertices $(0,\,\pm 5),$ foci $(0,\,±8)$
The equation of a tangent to the hyperbola $4x^2 -5y^2 = 20$ parallel to the line $x -y = 2$ is