The value of $\left| {\,\begin{array}{*{20}{c}}{41}&{42}&{43}\\{44}&{45}&{46}\\{47}&{48}&{49}\end{array}\,} \right| = $

  • A

    $2$

  • B

    $4$

  • C

    $0$

  • D

    $1$

Similar Questions

If $\left|\begin{array}{ccc}x+1 & x & x \\ x & x+\lambda & x \\ x & x & x+\lambda^2\end{array}\right|=\frac{9}{8}(103 x+81)$, then $\lambda$, $\frac{\lambda}{3}$ are the roots of the equation

  • [JEE MAIN 2023]

If $\left| {\begin{array}{*{20}{c}}
{a - b - c}&{2a}&{2a}\\
{2b}&{b - c - a}&{2b}\\
{2c}&{2c}&{c - a - b}
\end{array}} \right|$ $ = \left( {a + b + c} \right)\,{\left( {x + a + b + c} \right)^2}$ , $x   \ne 0$ and $a + b + c \ne 0$, then $x$ is equal to

  • [JEE MAIN 2019]

For the system of linear equations

$2 x+4 y+2 a z=b$

$x+2 y+3 z=4$

$2 x-5 y+2 z=8$

which of the following is NOT correct?

  • [JEE MAIN 2023]

If ${a_1},{a_2},{a_3}.....{a_n}....$ are in $G.P.$ then the value of the determinant $\left| {\,\begin{array}{*{20}{c}}{\log {a_n}}&{\log {a_{n + 1}}}&{\log {a_{n + 2}}}\\{\log {a_{n + 3}}}&{\log {a_{n + 4}}}&{\log {a_{n + 5}}}\\{\log {a_{n + 6}}}&{\log {a_{n + 7}}}&{\log {a_{n + 8}}}\end{array}\,} \right|$ is

  • [AIEEE 2005]

If ${\Delta _1} = \left| {\,\begin{array}{*{20}{c}}x&b&b\\a&x&b\\a&a&x\end{array}\,} \right|$ and ${\Delta _2} = \left| {\,\begin{array}{*{20}{c}}x&b\\a&x\end{array}\,} \right|$ are the given determinants, then