4-1.Complex numbers
normal

If $z_1 = 1+2i$ and $z_2 = 3+5i$ , then ${\mathop{\rm Re}\nolimits} \,\left( {\frac{{{{\overline Z }_2}{Z_1}}}{{{Z_2}}}} \right) = $

A

$\frac {-31}{17}$

B

$\frac {17}{22}$

C

$\frac {-17}{31}$

D

$\frac {22}{17}$

Solution

Given, $z_{1}=1+2 i, z_{2}=3+5 i$ and $\bar{z}_{2}=3-5 i$

$\frac{\bar{z}_{2} z_{1}}{z_{2}}=\frac{(3-5 i)(1+2 i)}{(3+5 i)}=\frac{13+i}{3+5 i}$

$=\frac{13+i}{3+5 i} \times \frac{3-5 i}{3-5 i}=\frac{44-62 i}{34}$

Then $\operatorname{Re}\left(\frac{\bar{z}_{2} z_{1}}{z_{2}}\right)=\frac{44}{34}=\frac{22}{17}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.