If ${z_1}$ and ${z_2}$ are any two complex numbers then $|{z_1} + {z_2}{|^2}$ $ + |{z_1} - {z_2}{|^2}$ is equal to

  • A

    $2|{z_1}{|^2}\,|{z_2}{|^2}$

  • B

    $2|{z_1}{|^2} + \,2\,\,|{z_2}{|^2}$

  • C

    $|{z_1}{|^2} + \,|{z_2}{|^2}$

  • D

    $2|{z_1}|\,\,|{z_2}|$

Similar Questions

The values of $z$for which $|z + i|\, = \,|z - i|$ are

If $\frac{\pi }{2} < \alpha  < \frac{3}{2}\pi $ , then the modulus and argument of $(1 + cos\, 2\alpha ) + i\, sin\, 2\alpha $ is respectively

If $z_1 , z_2$ and $z_3, z_4$ are $2$ pairs of complex conjugate numbers, then $\arg \left( {\frac{{{z_1}}}{{{z_4}}}} \right) + \arg \left( {\frac{{{z_2}}}{{{z_3}}}} \right)$ equals 

  • [JEE MAIN 2014]

If $\frac{3+i \sin \theta}{4-i \cos \theta}, \theta \in[0,2 \pi],$ is a real number, then an argument of $\sin \theta+\mathrm{i} \cos \theta$ is

  • [JEE MAIN 2020]

If $z$ is a complex number such that $\frac{{z - 1}}{{z + 1}}$ is purely imaginary, then