Let $z$ be a complex number (not lying on $X$-axis) of maximum modulus such that $\left| {z + \frac{1}{z}} \right| = 1$. Then
${\mathop{\rm Im}\nolimits} (z) = 0$
${\mathop{\rm Re}\nolimits} (z) = 0$
$amp(z) = \pi $
None of these
If ${z_1}.{z_2}........{z_n} = z,$ then $arg\,{z_1} + arg\,{z_2} + ....$+$arg\,{z_n}$ and $arg$$z$ differ by a
Consider the following two statements :
Statement $I$ : For any two non-zero complex numbers $\mathrm{z}_1, \mathrm{z}_2$
$\left(\left|z_1\right|+\left|z_2\right|\right)\left|\frac{z_1}{\left|z_1\right|}+\frac{z_2}{\left|z_2\right|}\right| \leq 2\left(\left|z_1\right|+\left|z_2\right|\right)$ and
Statement $II$ : If $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are three distinct complex numbers and a, b, c are three positive real numbers such that $\frac{a}{|y-z|}=\frac{b}{|z-x|}=\frac{c}{|x-y|}$, then
$\frac{\mathrm{a}^2}{\mathrm{y}-\mathrm{z}}+\frac{\mathrm{b}^2}{\mathrm{z}-\mathrm{x}}+\frac{\mathrm{c}^2}{\mathrm{x}-\mathrm{y}}=1$
Between the above two statements,
The maximum value of $|z|$ where z satisfies the condition $\left| {z + \frac{2}{z}} \right| = 2$ is
Argument and modulus of $\frac{{1 + i}}{{1 - i}}$ are respectively
Find the modulus and the argument of the complex number $z=-1-i \sqrt{3}$.