Find the number of non-zero integral solutions of the equation $|1-i|^{x}=2^{x}$
$|1-i|^{x}=2^{x}$
$\Rightarrow(\sqrt{1^{2}+(-1)^{2}})^{x}=2^{x}$
$\Rightarrow(\sqrt{2})^{x}=2^{x}$
$\Rightarrow 2^{x / 2}=2^{x}$
$\Rightarrow \frac{x}{2}=x$
$\Rightarrow x=2 x$
$\Rightarrow 2 x-x=0$
$\Rightarrow x=0$
Thus, $0$ is the only integral solution of the given equation. Therefore, the number of nonzero integral solutions of the given equation is $0 .$
The maximum value of $|z|$ where z satisfies the condition $\left| {z + \frac{2}{z}} \right| = 2$ is
The conjugate of the complex number $\frac{{2 + 5i}}{{4 - 3i}}$ is
The argument of the complex number $\sin \,\frac{{6\pi }}{5}\, + \,i\,\left( {1\, + \,\cos \,\frac{{6\pi }}{5}} \right)$ is
If $arg\,z < 0$ then $arg\,( - z) - arg\,(z)$ is equal to
If $z $ is a complex number of unit modulus and argument $\theta$, then ${\rm{arg}}\left( {\frac{{1 + z}}{{1 + (\bar z)}}} \right)$ equals.