If $|{\overrightarrow V _1} + {\overrightarrow V _2}|\, = \,|{\overrightarrow V _1} - {\overrightarrow V _2}|$ and ${V_2}$ is finite, then
${V_1}$ is parallel to ${V_2}$
${\overrightarrow V _1} = {\overrightarrow V _2}$
${V_1}$ and ${V_2}$ are mutually perpendicular
$|{\overrightarrow V _1}|\, = \,|{\overrightarrow V _2}|$
What vector must be added to the two vectors $\hat i - 2\hat j + 2\hat k$ and $2\hat i + \hat j - \hat k,$ so that the resultant may be a unit vector along $X-$axis
The vectors $\vec{A}$ and $\vec{B}$ are such that
$|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|$
The angle between the two vectors is
Explain the parallelogram method for vector addition. Also explain that this is comparable to triangle method.
The angle between vector $\vec{Q}$ and the resultant of $(2 \overrightarrow{\mathrm{Q}}+2 \overrightarrow{\mathrm{P}})$ and $(2 \overrightarrow{\mathrm{Q}}-2 \overrightarrow{\mathrm{P}})$ is: