Trigonometrical Equations
easy

If $2{\sin ^2}\theta = 3\cos \theta ,$ where $0 \le \theta \le 2\pi $, then $\theta = $

A

$\frac{\pi }{6},\frac{{7\pi }}{6}$

B

$\frac{\pi }{3},\frac{{5\pi }}{3}$

C

$\frac{\pi }{3},\frac{{7\pi }}{3}$

D

None of these

(IIT-1963)

Solution

(b) $2 – 2{\cos ^2}\theta = 3\cos \theta $

==> $2{\cos ^2} + 3\cos \theta – 2 = 0$

==> $\cos \theta = \frac{{ – 3 \pm \sqrt {9 + 16} }}{4} = \frac{{ – 3 \pm 5}}{4}$

Neglecting $(-)$ sign, we get

$\cos \theta = \frac{1}{2} = \cos \left( {\frac{\pi }{3}} \right)$

$ \Rightarrow $ $\theta = 2n\pi \pm \frac{\pi }{3}$.

The values of $\theta $ between $0$ and $2\pi $ are $\frac{\pi }{3},{\rm{ }}\frac{{{\rm{5}}\pi }}{{\rm{3}}}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.