The equation $\sin x + \sin y + \sin z = - 3$ for $0 \le x \le 2\pi ,$ $0 \le y \le 2\pi ,$ $0 \le z \le 2\pi $, has

  • A

    One solution

  • B

    Two sets of solutions

  • C

    Four sets of solutions

  • D

    No solution

Similar Questions

The equation, $sin^2 \theta - \frac{4}{{{{\sin }^3}\,\,\theta \,\, - \,\,1}} = 1$$ -\frac{4}{{{{\sin }^3}\,\,\theta \,\, - \,\,1}}$ has :

The number of solutions of the equation $\sin (9 x)+\sin (3 x)=0$ in the closed interval $[0,2 \pi]$ is

  • [KVPY 2019]

The solution set of the system of equation

$x\,\, + \,\,y\,\, = \,\,\frac{{2\pi }}{3},\,{\rm{cos}}\,{\rm{x   + }}\,{\rm{ cos}}\,{\rm{y}}\,{\rm{ = }}\,\frac{3}{2},$ where $x$ and $y$ are real in

If $\sec 4\theta - \sec 2\theta = 2$, then the general value of $\theta $ is

  • [IIT 1963]

The number of solutions of the given equation $\tan \theta + \sec \theta = \sqrt 3 ,$ where $0 < \theta < 2\pi $ is