Let $\theta, \phi \in[0,2 \pi]$ be such that $2 \cos \theta(1-\sin \phi)=\sin ^2 \theta\left(\tan \frac{\theta}{2}+\cot \frac{\theta}{2}\right) \cos \phi-1, \tan (2 \pi-\theta)>0$ and $-1 < \sin \theta < -\frac{\sqrt{3}}{2}$. Then $\phi$ cannot satisfy

$(A)$ $0 < \phi<\frac{\pi}{2}$ $(B)$ $\frac{\pi}{2} < \phi<\frac{4 \pi}{3}$

$(C)$ $\frac{4 \pi}{3} < \phi<\frac{3 \pi}{2}$ $(D)$ $\frac{3 \pi}{2} < \phi < 2 \pi$

  • [IIT 2012]
  • A

    $(A,B,C)$

  • B

    $(A,B,D)$

  • C

    $(A,C,D)$

  • D

    $(B,C,D)$

Similar Questions

Let $f(x) = sinx + 2sin^2x + 3sin^3x + 4sin^4x+....\infty $ , then number of solution $(s)$ of equation $f(x) = 2$ in $x \in \left[ { - \pi ,\pi } \right] - \left\{ { \pm \frac{\pi }{2}} \right\}$ is

The smallest positive root of the equation $tanx\,  -\,  x = 0$ lies on

The most general value of $\theta $ which will satisfy both the equations $\sin \theta = - \frac{1}{2}$ and $\tan \theta = \frac{1}{{\sqrt 3 }}$ is

The number of solutions of the equation $4 \sin ^2 x-4$ $\cos ^3 \mathrm{x}+9-4 \cos \mathrm{x}=0 ; \mathrm{x} \in[-2 \pi, 2 \pi]$ is :

  • [JEE MAIN 2024]

The number of points in $(-\infty, \infty)$, for which $x^2-x \sin x-\cos x=0$, is

  • [IIT 2013]