Trigonometrical Equations
normal

If $cosx + secx =\, -2$, then for a $+ve$ integer $n$, $cos^n x + sec^n x$ is

A

always $2$

B

always $-2$

C

$-2$ if $n$ is odd and $2$ if $n$ is even

D

$-2$ if $n$ is even and $2$ if $n$ is odd

Solution

$\cos x+\sec x=-2$

$\Rightarrow \cos x+\frac{1}{\cos x}=-2$

$\Rightarrow \frac{\cos ^{2} x+1}{\cos x}=-2$

$\Rightarrow \cos ^{2} x+1=-2 \cos x$

$\Rightarrow \cos ^{2} x+2 \cos x+1=0$

$\Rightarrow(\cos x+1)^{2}=0 \quad \Rightarrow \quad \cos x=-1$

$\sin x =\sqrt{1-\cos ^{2} x}$

$=\sqrt{1-1}=0$

$\cos x=-1, \sin x=0$

$\cos ^{n} x+\sin ^{n} x=(-1)^{n}+0$

$\left\{\begin{array}{cc}-1 & n \text { is odd } \\ 1 & n \text { is even }\end{array}\right.$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.