Trigonometrical Equations
normal

જો $cosx + secx =\, -2$, હોય તો ધન પૂર્ણાક $n$ માટે $cos^n x + sec^n x$ ની કિમત 

A

હમેશા $2$

B

હમેશા $-2$

C

$-2$ જો $n$ એ અયુગ્મ અને $2$ જો $n$ યુગ્મ હોય 

D

$-2$ જો $n$ એ યુગ્મ અને $2$ જો $n$ અયુગ્મ હોય 

Solution

$\cos x+\sec x=-2$

$\Rightarrow \cos x+\frac{1}{\cos x}=-2$

$\Rightarrow \frac{\cos ^{2} x+1}{\cos x}=-2$

$\Rightarrow \cos ^{2} x+1=-2 \cos x$

$\Rightarrow \cos ^{2} x+2 \cos x+1=0$

$\Rightarrow(\cos x+1)^{2}=0 \quad \Rightarrow \quad \cos x=-1$

$\sin x =\sqrt{1-\cos ^{2} x}$

$=\sqrt{1-1}=0$

$\cos x=-1, \sin x=0$

$\cos ^{n} x+\sin ^{n} x=(-1)^{n}+0$

$\left\{\begin{array}{cc}-1 & n \text { is odd } \\ 1 & n \text { is even }\end{array}\right.$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.