If $0 < x < \frac{\pi }{2},$ then
$\frac{2}{\pi } > \frac{{\sin \,x}}{x}$
$\frac{{\sin \,x}}{x} < 1$
$\frac{{\sin \,x}}{x} < 0.5$
$\frac{{\sin \,x}}{x} > 1$
For $x>0$
$x>\sin x$
$\frac{\sin x}{x}<1$
Consider the function $f (x) = x^3 – 8x^2 + 20x -13$ Number of positive integers $x$ for which $f (x)$ is a prime number, is
Which one of the following best represent the graph of $y = \frac{|x-x^2|}{x^2-x}$ ?
A function $f(x)$ is given by $f(x)=\frac{5^{x}}{5^{x}+5}$, then the sum of the series
$f\left(\frac{1}{20}\right)+f\left(\frac{2}{20}\right)+f\left(\frac{3}{20}\right)+\ldots \ldots+f\left(\frac{39}{20}\right)$ is equal to ……. .
Let $R$ be the set of all real numbers and let $f$ be a function from $R$ to $R$ such that $f(x)+\left(x+\frac{1}{2}\right) f(1-x)=1$, for all $x \in R$. Then $2 f(0)+3 f(1)$ is equal to
Domain of the function $f(x) = {\sin ^{ – 1}}(1 + 3x + 2{x^2})$ is
Confusing about what to choose? Our team will schedule a demo shortly.