Let $R$ be the set of all real numbers and let $f$ be a function from $R$ to $R$ such that $f(x)+\left(x+\frac{1}{2}\right) f(1-x)=1$, for all $x \in R$. Then $2 f(0)+3 f(1)$ is equal to

  • [KVPY 2014]
  • A

    $2$

  • B

    $0$

  • C

    $-2$

  • D

    $-4$

Similar Questions

Let $f(\theta)$ is distance of the line $( \sqrt {\sin \theta } )x + (  \sqrt {\cos  \theta })y +1 = 0$ from origin. Then the range of $f(\theta)$ is -

The sentence, What is your Name ? is

Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$f(x)=\frac{2 x}{\sqrt{1+9 x^2}}$. If the composition of $f, \underbrace{(f \circ f \circ f \circ \ldots \circ f)}_{10 \text { times }}(x)=\frac{2^{10} x}{\sqrt{1+9 \alpha x^2}}$, then the value of $\sqrt{3 \alpha+1}$ is equal to....................

  • [JEE MAIN 2024]

If $f(x) = \cos (\log x)$, then $f({x^2})f({y^2}) - \frac{1}{2}\left[ {f\,\left( {\frac{{{x^2}}}{2}} \right) + f\left( {\frac{{{x^2}}}{{{y^2}}}} \right)} \right]$ has the value

If $f(x) = \frac{{{x^2} - 1}}{{{x^2} + 1}}$, for every real numbers. then the minimum value of $f$