Gujarati
1.Relation and Function
normal

Let $R$ be the set of all real numbers and let $f$ be a function from $R$ to $R$ such that $f(x)+\left(x+\frac{1}{2}\right) f(1-x)=1$, for all $x \in R$. Then $2 f(0)+3 f(1)$ is equal to

A

$2$

B

$0$

C

$-2$

D

$-4$

(KVPY-2014)

Solution

(c)

Given,

$\Rightarrow f(x)+\left(x+\frac{1}{2}\right) f(1-x)=1$

$\text { Put } x=1-x \text {, we get }$

$f(1-x)+\left(1-x+\frac{1}{2}\right) f(1-(1-x)=1$

$\Rightarrow f(1-x)+\left(\frac{3}{2}-x\right) f(x)=1$

Eq.$(ii)$ multiply by $\left(x+\frac{1}{2}\right)$ we get

$\left(\frac{3}{2}-x\right)\left(x+\frac{1}{2}\right) f(x)+\left(x+\frac{1}{2}\right)$

$f(1-x)=x+\frac{1}{2}$

On subtracting Eq. $(iii)$ from Eq.$(i)$, we get

$f(x)\left[1-\left(\frac{3}{4}+x-x^2\right)\right]=1-x-\frac{1}{2}$

$\Rightarrow f(x)=\frac{\frac{1}{2}-x}{x^2-x+\frac{1}{4}} \Rightarrow f(0)=2 \text { and } f(1)=-2$

$\because 2 f(0)+3 f(1)-2(2)+3(-2)=4-6=-2$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.