જો  $0 < x < \frac{\pi }{2},$ હોય તો

  • A

    $\frac{2}{\pi } > \frac{{\sin \,x}}{x}$

  • B

    $\frac{{\sin \,x}}{x} < 1$

  • C

    $\frac{{\sin \,x}}{x} < 0.5$

  • D

    $\frac{{\sin \,x}}{x} > 1$

Similar Questions

સાબિત કરો કે વિધેય $f: R \rightarrow R$, $f(x)=2 x$ એક-એક અને વ્યાપ્ત છે. 

વિધેય $f(x) = \left\{ \begin{array}{l}{\tan ^{ - 1}}x\;\;\;\;\;,\;|x|\; \le 1\\\frac{1}{2}(|x|\; - 1)\;,\;|x|\; > 1\end{array} \right.$ ના વિકલીતનો પ્રદેશ મેળવો.

  • [IIT 2002]

જો વિધેય $\log _e\left(\frac{6 x^2+5 x+1}{2 x-1}\right)+\cos ^{-1}\left(\frac{2 x^2-3 x+4}{3 x-5}\right)$ નો પ્રદેશ $(\alpha, \beta) \cup(\gamma, \delta]$ હોય, તો $18\left(\alpha^2+\beta^2+\gamma^2+\delta^2\right)=......$

  • [JEE MAIN 2023]

$f(x)$ અને $g(x)$ એ બે વિધેય માટે $f\left( x \right) = \frac{{2\sin \pi x}}{x}$ અને $g\left( x \right) = f\left( {1 - x} \right) + f\left( x \right)$ છે. જો $g\left( x \right) = kf(\frac{x}{2})f\left( {\frac{{1 - x}}{2}} \right)$ હોય તો $k$ ની કિમત ........... થાય.

જો $f( x + y )=f( x ) f( y )$ અને $\sum \limits_{ x =1}^{\infty} f( x )=2, x , y \in N$ જ્યાં $N$ એ બધી પ્રાકૃતિક સંખ્યાઓનો ગણ હોય તો $\frac{f(4)}{f(2)}$ ની કિમત શોધો 

  • [JEE MAIN 2020]