તદેવ વિધેય $I _{ N }: N \rightarrow N$, $I _{ N }$ $(x)=x$  $\forall $  $x \in N$ દ્વારા વ્યાખ્યાયિત છે. સાબિત કરો કે $I _{ N }$ વ્યાપ્ત હોવા છતાં $I _{ N }+ I _{ N }:$  $ N \rightarrow N$, $\left(I_{N}+I_{N}\right)(x)=$ $I_{N}(x)+I_{N}(x)$ $=x+x=2 x$ વ્યાપ્ત નથી.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Clearly $I_{N}$ is onto. But $I_{N}+I_{N}$ is not onto, as we can find an element $3$ in the co-domain $N$ such that there does not exist any $x$ in the domain $N$ with $\left( I _{ N }+ I _{ N }\right)(x)=2 x=3$

Similar Questions

વિધેય $f(x)=\frac{1}{\sqrt{[x]^2-3[x]-10}}$ નો પ્રદેશ $...........$ છે.

(જ્યાં [x] એ $\leq x$ અથવા તેનાથી નાનો મહત્તમ પૂર્ણાક દર્શાવે છે.)

  • [JEE MAIN 2023]

જો $f(\theta)$ એ રેખા $( \sqrt {\sin \theta } )x + (  \sqrt {\cos  \theta })y +1 = 0$ નુ ઉંગમબિંદુ થી અંતર હોય તો $f(\theta)$ નો વિસ્તાર મેળવો. 

વિધેય $f(x) = \log \cos 2x + \sin 4x$ નુ આવર્તમાન મેળવો.

જો શૂન્યતર વાસ્તવિક સંખ્યા $b$ અને $c$ છે કે જેથી $min \,f\left( x \right) > \max \,g\left( x \right)$, કે જ્યાં  $f\left( x \right) = {x^2} + 2bx + 2{c^2}$ અને $g\left( x \right) = {-x^2} - 2cx + {b^2}$$\left( {x \in R} \right)$; તો  $\left| {\frac{c}{b}} \right|$ એ . . . અંતરાલ માં છે .

  • [JEE MAIN 2014]

$f(x)=4 \sqrt{2} x^3-3 \sqrt{2} x-1$ દ્વારા વ્યાખ્યાયિત વિધેય $f:\left[\frac{1}{2}, 1\right] \rightarrow \mathbb{R}$ ધ્યાને લો. નીચેના વિધાનો ધ્યાને લો

$(I)$ $y=f(x)$ એ $x$-અક્ષને બરાબર એક બિંદુએ છેદ છે.

$(II)$  $y=f(x)$ એ $x$-અક્ષને $x=\cos \frac{\pi}{12}$ આગળ છેદ છે. તો.......

  • [JEE MAIN 2024]