- Home
- Standard 12
- Mathematics
5. Continuity and Differentiation
normal
If $f(x)$ = $sin^2x + xsin2x.logx$, then $f(x)$ = $0$ has
A
exactly one root in $\left( {0,2\pi } \right]$
B
atleast two roots in $\left( {0,2\pi } \right]$
C
atmost one root in $\left( {0,2\pi } \right]$
D
no root in $\left( {0,2\pi } \right]$
Solution
$ f(\mathrm{x}) =\mathrm{x}\left\{\sin ^{2} \mathrm{x} \cdot \frac{1}{\mathrm{x}}+\sin 2 \mathrm{x} \cdot \log \mathrm{x}\right\} $
$=\mathrm{x}\left(\sin ^{2} \mathrm{x} \cdot \log \mathrm{x}\right)^{\prime} $
$\mathrm{g}(\mathrm{x}) =\sin ^{2} \mathrm{x} \cdot \log \mathrm{x} $
$ \mathrm{g}(1) =0, \mathrm{g}(\pi)=0, \mathrm{g}(2 \pi)=0 $
$\therefore $ by Rolle's theorem
$g^{\prime}(x)=0$ has at least two root in $(1,2 \pi)$
Standard 12
Mathematics