If $f(x)$ = $sin^2x + xsin2x.logx$, then $f(x)$ = $0$ has
exactly one root in $\left( {0,2\pi } \right]$
atleast two roots in $\left( {0,2\pi } \right]$
atmost one root in $\left( {0,2\pi } \right]$
no root in $\left( {0,2\pi } \right]$
Let $f(x) = (x-4)(x-5)(x-6)(x-7)$ then -
Verify Rolle's theorem for the function $y=x^{2}+2, a=-2$ and $b=2$
lf Rolle's theorem holds for the function $f(x) =2x^3 + bx^2 + cx, x \in [-1, 1],$ at the point $x = \frac {1}{2},$ then $2b+ c$ equals
Mean value theorem $f(b) -f(a) = (b -a) f '(x_1);$ from $a < x_1 < b,$ if $f(x) = 1/x$ then $x_1 = ?$
Let $g: R \rightarrow R$ be a non constant twice differentiable such that $g^{\prime}\left(\frac{1}{2}\right)=g^{\prime}\left(\frac{3}{2}\right)$. If a real valued function $f$ is defined as $\mathrm{f}(\mathrm{x})=\frac{1}{2}[\mathrm{~g}(\mathrm{x})+\mathrm{g}(2-\mathrm{x})]$, then