If $f(x)$ = $sin^2x + xsin2x.logx$, then $f(x)$ = $0$ has

  • A

    exactly one root in $\left( {0,2\pi } \right]$

  • B

    atleast two roots in $\left( {0,2\pi } \right]$

  • C

    atmost one root in $\left( {0,2\pi } \right]$

  • D

    no root in $\left( {0,2\pi } \right]$

Similar Questions

Let $f(x) = (x-4)(x-5)(x-6)(x-7)$ then -

Verify Rolle's theorem for the function $y=x^{2}+2, a=-2$ and $b=2$

lf Rolle's theorem holds for the function $f(x) =2x^3 + bx^2 + cx, x \in [-1, 1],$  at the point $x = \frac {1}{2},$ then $2b+ c$ equals

  • [JEE MAIN 2015]

Mean value theorem $f(b) -f(a) = (b -a) f '(x_1);$ from $a < x_1 < b,$ if $f(x) = 1/x$ then $x_1 = ?$

Let $g: R \rightarrow R$ be a non constant twice differentiable such that $g^{\prime}\left(\frac{1}{2}\right)=g^{\prime}\left(\frac{3}{2}\right)$. If a real valued function $f$ is defined as $\mathrm{f}(\mathrm{x})=\frac{1}{2}[\mathrm{~g}(\mathrm{x})+\mathrm{g}(2-\mathrm{x})]$, then

  • [JEE MAIN 2024]