- Home
- Standard 11
- Physics
Which of the following equations is dimensionally incorrect?
Where $t=$ time, $h=$ height, $s=$ surface tension, $\theta=$ angle, $\rho=$ density, $a, r=$ radius, $g=$ acceleration due to gravity, ${v}=$ volume, ${p}=$ pressure, ${W}=$ work done, $\Gamma=$ torque, $\varepsilon=$ permittivity, ${E}=$ electric field, ${J}=$ current density, ${L}=$ length.
${v}=\frac{\pi {pa}^{4}}{8 \eta {L}}$
${h}=\frac{2 {s} \cos \theta}{\rho {rg}}$
${J}=\varepsilon \frac{\partial {E}}{\partial {t}}$
${W}=\Gamma \theta$
Solution
$(i)$ $\frac{\pi {pa}^{4}}{8 \eta {L}}=\frac{{d} {v}}{{dt}}=$ Volumetric flow rate
(poiseuille's law)
$(ii)$ ${h} \rho {g}=\frac{2 {s}}{{r}} \cos \theta$
$(iii)$ ${RHS} \Rightarrow \varepsilon \times \frac{1}{4 \pi \varepsilon_{0}} \frac{{a}}{{r}^{2}} \times \frac{1}{\varepsilon}=\frac{{q}}{{t}} \times \frac{1}{{r}^{2}}$ $=\frac{{I}}{{L}^{2}}={IL}^{-2}$
$LHS$
${T}=\frac{{I}}{{A}}={IL}^{-2}$
$(iv)$ ${W}=\tau \theta$
Similar Questions
Match the following two coloumns
Column $-I$ | Column $-II$ |
$(A)$ Electrical resistance | $(p)$ $M{L^3}{T^{ – 3}}{A^{ – 2}}$ |
$(B)$ Electrical potential | $(q)$ $M{L^2}{T^{ – 3}}{A^{ – 2}}$ |
$(C)$ Specific resistance | $(r)$ $M{L^2}{T^{ – 3}}{A^{ – 1}}$ |
$(D)$ Specific conductance | $(s)$ None of these |