From the equation $\tan \theta = \frac{{rg}}{{{v^2}}}$, one can obtain the angle of banking $\theta $ for a cyclist taking a curve (the symbols have their usual meanings). Then say, it is
Both dimensionally and numerically correct
Neither numerically nor dimensionally correct
Dimensionally correct only
Numerically correct only
Which of the two have same dimensions
If the time period $(T)$ of vibration of a liquid drop depends on surface tension $(S)$, radius $(r)$ of the drop and density $(\rho )$ of the liquid, then the expression of $T$ is
Two quantities $A$ and $B$ have different dimensions. Which mathematical operation given below is physically meaningful
If time $(t)$, velocity $(u)$, and angular momentum $(I)$ are taken as the fundamental units. Then the dimension of mass $({m})$ in terms of ${t}, {u}$ and ${I}$ is
Which of the following dimensions will be the same as that of time?