If $f(x)$ is a quadratic expression such that $f(1) + f (2)\, = 0$ , and $-1$ is a root of $f(x)\, = 0$, then the other root of $f(x)\, = 0$ is
$ - \frac{5}{8}$
$ - \frac{8}{5}$
$ \frac{5}{8}$
$ \frac{8}{5}$
Domain of the function $f(x) = {\sin ^{ - 1}}\left( {\frac{{2 - |x|}}{4}} \right) + {\cos ^{ - 1}}\left( {\frac{{2 - |x|}}{4}} \right) + {\tan ^{ - 1}}\left( {\frac{{2 - |x|}}{4}} \right)$ is
Consider the identity function $I _{ N }: N \rightarrow N$ defined as $I _{ N }$ $(x)=x$ $\forall $ $x \in N$ Show that although $I _{ N }$ is onto but $I _{ N }+ I _{ N }:$ $ N \rightarrow N$ defined as $\left(I_{N}+I_{N}\right)(x)=$ $I_{N}(x)+I_{N}(x)$ $=x+x=2 x$ is not onto.
Define a function $f(x)=\frac{16 x^2-96 x+153}{x-3}$ for all real $x \neq 3$. The least positive value of $f(x)$ is
Let $A$ be the set of all $50$ students of Class $X$ in a school. Let $f: A \rightarrow N$ be function defined by $f(x)=$ roll number of the student $x$. Show that $f$ is one-one but not onto.
If the domain of the function $f(x)=\sec ^{-1}\left(\frac{2 x}{5 x+3}\right)$ is $[\alpha, \beta) \cup(\gamma, \delta]$, then $|3 \alpha+10(\beta+\gamma)+21 \delta|$ is equal to $.......$.