Let $f(x)=a x^{2}+b x+c$ be such that $f(1)=3, f(-2)$ $=\lambda$ and $f (3)=4$. If $f (0)+ f (1)+ f (-2)+ f (3)=14$, then $\lambda$ is equal to$...$
$-4$
$\frac{13}{2}$
$\frac{23}{2}$
$4$
Which of the following function is surjective but not injective
If $h\left( x \right) = \left[ {\ln \frac{x}{e}} \right] + \left[ {\ln \frac{e}{x}} \right]$ ,where [.] denotes greatest integer function, then which of the following is false ?
If $y = 3[x] + 1 = 4[x -1] -10$, then $[x + 2y]$ is equal to (where $[.]$ is $G.I.F.$)
If $f(x) = \log \frac{{1 + x}}{{1 - x}}$, then $f(x)$ is
If function $f : R \to S, f(x) = (\sin x -\sqrt 3 \cos x+1)$ is onto, then $S$ is equal to